Перевод: со всех языков на русский

с русского на все языки

перепад тока

  • 1 current taper

    Англо-русский железнодорожный словарь > current taper

  • 2 Stromstoß

    сущ.
    1) тех. импульс
    2) радио. перепад тока, скачок тока, токовый импульс
    3) электр. толчок тока, импульс тока

    Универсальный немецко-русский словарь > Stromstoß

  • 3 Stromsprung

    сущ.
    2) электр. скачок тока

    Универсальный немецко-русский словарь > Stromsprung

  • 4 current taper

    Железнодорожный термин: перепад тока

    Универсальный англо-русский словарь > current taper

  • 5 einzelner Stromsprung

    Универсальный немецко-русский словарь > einzelner Stromsprung

  • 6 Stromgefälle

    сущ.
    2) электр. перепад тока

    Универсальный немецко-русский словарь > Stromgefälle

  • 7 base current change

    English-Russian dictionary of telecommunications and their abbreviations > base current change

  • 8 base current change

    Англо-русский словарь по машиностроению > base current change

  • 9 step

    1. шаг (в фигурном катании)
    2. шаг
    3. ступень компенсации реактивной мощности
    4. ступень
    5. скачок (тока, сигнала)
    6. скачок (например тока)
    7. проект проведения экспериментов по источникам радиоактивности
    8. программа технических испытаний безопасности (ядерного реактора)
    9. программа исследований источников радиоактивности
    10. порог гидродинамической муфты
    11. перепад (уровней сигнала)

     

    перепад (уровней сигнала)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    порог гидродинамической муфты
    Устройство, частично перекрывающее межлопастные каналы ГДМ для ограничения величины передаваемого крутящего момента.
    [ ГОСТ 19587-74

    Тематики

    EN

    DE

    FR

     

    программа исследований источников радиоактивности

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    программа технических испытаний безопасности (ядерного реактора)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    проект проведения экспериментов по источникам радиоактивности

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    скачок (например тока)

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    скачок (тока, сигнала)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    шаг
    Расстояние между центрами колонн, болтов, заклёпок и т.д., располагаемыми как по продольным, так и по поперечным осям
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    шаг
    В многошаговом расчете (например, при решении задач нелинейного программирования) этап, дающий промежуточный результат, позволяющий обычно судить о приближении или наоборот удалении расчета от цели. Одной из разновидностей шага является итерация в машинном расчете, которая отличается от других его этапов лишь значениями переменных величин, а не составом процедур обработки информации. Пример см. в статье Алгоритм.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    DE

    FR

     

    шаг
    Термин в фигурном катании, обозначающий видимый след на льду, исполненный на одной ноге. Он может состоять из реберной дуги, перетяжки, поворота, например, тройки или выкрюка, или исполняться на двух ребрах (что обычно не допускается).
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    EN

    step
    In figure skating, the visible tracing on the ice that is executed on one foot. It may consist of an edge, change of edge, a turn such as a three or counter, or a flat (which usually is not acceptable).
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    EN

     

    ступень компенсации реактивной мощности
    -
    [Интент]

    В ступенчатых компенсаторах реактивной мощности (КРМ) компенсация реактвной мощности осуществляется коммутацией (т. е. подключением и отключением) ступененй компенсации реактивной мощности.

    Каждая ступень компенсации представляет собой секцию конденсаторных батарей определенной мощности, измеряемой в квар.

    Ступени могут быть равной мощности, например 5, 5, 5, 5, 5, 5 квар. В этом случае говорят, что соотношение ступеней равно 1:1:1:1:1:1.

    Мощность каждой ступени может быть кратна мощности наименьшей ступени, например, КРМ может содержать ступени компенсации 5, 10, 20, 20, 20 кВАр. В этом случае говорят, что соотношение ступеней равно 1:2:4:4:4:

    Тематики

    Действия

    Сопутствующие термины

    EN

    3.1.11 ступень (step): Горизонтальная поверхность, на которую ставят ногу, чтобы подняться или спуститься по лестнице.

    Источник: ГОСТ Р ИСО 14122-3-2009: Безопасность машин. Средства доступа к машинам стационарные. Часть 3. Лестницы и перила оригинал документа

    Англо-русский словарь нормативно-технической терминологии > step

  • 10 step

    1) стадия; ступень; шаг; этап
    2) ступень(ка), перепад; скачок (напр. тока) || изменять(ся) ступенчатым образом; испытывать перепад или скачок (напр. тока)
    3) шаг || двигаться шагами; работать в пошаговом режиме || пошаговый
    4) расстояние между делениями шкалы (напр. на оси координат)
    6) большой тон (интервал частот 9:8)
    7) зонировать (напр. линзу)
    - cleavage steps
    - current step
    - drive-in step of diffusion
    - E-plane step
    - Fiske steps
    - frequency step
    - growth step
    - half step
    - H-plane step
    - job step
    - macroscopic step
    - oxide step
    - phase step
    - predeposition step of diffusion
    - quantization step
    - quantum step
    - range step
    - rate-controlling step
    - rate-determining step
    - rate-limiting step
    - single step
    - test step
    - time step
    - unit step
    - voltage step
    - whole step

    English-Russian electronics dictionary > step

  • 11 step

    1) стадия; ступень; шаг; этап
    2) ступень(ка), перепад; скачок (напр. тока) || изменять(ся) ступенчатым образом; испытывать перепад или скачок (напр. тока)
    3) шаг || двигаться шагами; работать в пошаговом режиме || пошаговый
    4) расстояние между делениями шкалы (напр. на оси координат)
    6) большой тон (интервал частот 9: 8)
    7) зонировать (напр. линзу)
    - cleavage steps
    - current step
    - drive-in step of diffusion
    - E-plane step
    - Fiske steps
    - frequency step
    - growth step
    - half step
    - H-plane step
    - job step
    - macroscopic step
    - oxide step
    - phase step
    - predeposition step of diffusion
    - quantization step
    - quantum step
    - range step
    - rate-controlling step
    - rate-determining step
    - rate-limiting step
    - single step
    - test step
    - time step
    - unit step
    - voltage step
    - whole step

    The New English-Russian Dictionary of Radio-electronics > step

  • 12 lead acid battery

    1. свинцово-кислотная аккумуляторная батарея

     

    свинцово-кислотная аккумуляторная батарея
    Аккумуляторная батарея, в которой электроды изготовлены главным образом из свинца, а электролит представляет собой раствор серной кислоты.
    [Инструкция по эксплуатации стационарных свинцово-кислотных аккумуляторных батарей в составе ЭПУ на объектах ВСС России. Москва 1998 г.]


    Свинцово-кислотные аккумуляторы для стационарного оборудования связи

    О. Чекстер, И. Джосан

    Источник: http://www.solarhome.ru/biblio/accu/chekster.htm

    При организации электропитания аппаратуры связи широкое применение находят аккумуляторные установки: их применяют для обеспечения бесперебойности и надлежащего качества электропитания оборудования связи, в том числе при перерывах внешнего электроснабжения, а также для обеспечения запуска и работы автоматики собственных электростанций и электроагрегатов. В подавляющем большинстве аккумуляторных установок используются стационарные свинцово-кислотные элементы и моноблоки.

    Свинцово-кислотные аккумуляторы: за и против

    Преимущественное применение свинцово-кислотных аккумуляторов объясняется целым рядом их достоинств.

    1. Во-первых, диапазон емкостей аккумуляторов находится в пределах от единиц ампер-часов до десятков килоампер-часов, что позволяет обеспечивать комплектацию батарей любого необходимого резерва.
    2. Во-вторых, соотношение между конечными зарядным и разрядным напряжениями при зарядах и разрядах свинцово-кислотных аккумуляторов имеет наименьшее значение из всех электрохимических систем источников тока, что позволяет обеспечивать низкий перепад напряжения на нагрузке во всех режимах работы электропитающей установки.
    3. В-третьих, свинцово-кислотные аккумуляторы отличаются низкой величиной саморазряда и возможностью сохранения заряда (емкости) при длительном подзаряде.
    4. В-четвертых, свинцово-кислотные аккумуляторы обладают сравнительно низким внутренним сопротивлением, что обуславливает достаточную стабильность напряжения питания при динамических изменениях сопротивления нагрузки.

    Вместе с тем свинцово-кислотным аккумуляторам присущи недостатки, ограничивающие сферу их применения и усложняющие организацию их эксплуатации.

    Из-за низкой удельной плотности запасаемой энергии свинцово-кислотные аккумуляторы имеют достаточно большие массогабаритные параметры. Однако для стационарного применения этот показатель не имеет главенствующего значения в отличие от применения аккумуляторов для питания мобильных устройств.

    Поскольку в установках свинцово-кислотных аккумуляторов происходит газообразование, для обеспечения взрывобезопасности должна быть налажена естественная или принудительная вентиляция - в зависимости от условий применения и типа аккумуляторов. По этой же причине аккумуляторные установки нельзя размещать в герметичных шкафах, отсеках и т.д.

    Разряженные свинцово-кислотные аккумуляторы требуют немедленного заряда. В противном случае переход мелкокристаллического сульфата свинца на поверхности электродов в крупнокристаллическую фазу может привести к безвозвратной потере емкости аккумуляторов. В связи с этим при длительном хранении такие аккумуляторы (кроме сухозаряженных) необходимо периодически дозаряжать.

    Типы аккумуляторов

    По исполнению

    Согласно классификации МЭК (стандарт МЭК 50 (486)-1991) свинцово-кислотные аккумуляторы выпускаются в открытом и закрытом исполнении.

    Открытые аккумуляторы - это аккумуляторы, имеющие крышку с отверстием, через которое могут удаляться газообразные продукты, заливаться электролит, производиться замер плотности электролита. Отверстия могут быть снабжены системой вентиляции.

    Закрытые аккумуляторы - это аккумуляторы, закрытые в обычных условиях работы, но снабженные устройствами, позволяющими выделяться газу, когда внутреннее давление превышает установленное значение. Дополнительная доливка воды в такие аккумуляторы невозможна. Эти аккумуляторы остаются закрытыми, имеют низкое газообразование при соблюдении условий эксплуатации, указанных изготовителем, и предназначены для работы в исходном герметизированном состоянии на протяжении всего срока службы. Их еще называют аккумуляторами с регулируемым клапаном, герметизированными или безуходными.

    В свинцово-кислотных аккумуляторах во всех режимах их работы, в том числе и при разомкнутой цепи нагрузки (холостой ход), происходит сульфатация поверхности электродов и газообразование с расходом на эти реакции воды, входящей в состав электролита. Это вынуждает при эксплуатации обычных открытых аккумуляторов производить периодический контроль уровня и плотности электролита, доливку дистиллированной воды с проведением уравнительных зарядов, что является довольно трудоемким процессом.

    В герметизированных аккумуляторах за счет применения материалов с пониженным содержанием примесей, иммобилизации электролита и других конструктивных особенностей интенсивность сульфатации и газообразования существенно снижена, что позволяет размещать такие аккумуляторы вместе с питаемым оборудованием.

    По конструкции электродов

    Область применения и особенности эксплуатации свинцово-кислотных аккумуляторов определяются их конструкцией. По типу конструкции положительных электродов (пластин) различают следующие типы аккумуляторов:

    • с электродами большой поверхности (по классификации немецкого стандарта DIN VDE 510 - GroE);
    • с панцирными (трубчатыми) положительными электродами (по классификации DIN - OPzS и OPzV);
    • с намазными и стержневыми положительными электродами (по классификации DIN - Ogi).

    Герметизированные аккумуляторы, как правило, имеют намазные положительные и отрицательные электроды (за исключением аккумуляторов OPzV).

    Критерии выбора

    При выборе типа стационарного свинцово-кислотного аккумулятора, наиболее пригодного для конкретной области применения, необходимо руководствоваться следующими критериями:

    • режим разряда и отдаваемая при этом емкость;
    • особенности размещения;
    • особенности эксплуатации;
    • срок службы;
    • стоимость.

    Режим разряда

    При выборе аккумуляторов для определенного режима разряда следует учитывать, что при коротких режимах разряда коэффициент отдачи аккумуляторов по емкости меньше единицы. При одинаковой емкости отдача элементов с электродами большой поверхности выше в два раза, чем для элементов с панцирными электродами, и в полтора раза - чем для элементов с намазными электродами.

    Стоимость

    Стоимость аккумулятора зависит от его типа: как правило, аккумуляторы с электродами большой поверхности дороже панцирных, а намазные - дешевле и тех и других. Герметизированные аккумуляторы стоят больше, чем открытые.

    Срок службы

    Самыми долговечными при соблюдении правил эксплуатации являются аккумуляторы с электродами большой поверхности, для которых срок службы составляет 20 и более лет. Второе место по сроку службы занимают аккумуляторы с панцирными электродами - примерно 16-18 лет. Срок службы аккумуляторов с намазными электродами достигает 10-12 лет. Примерно такие же сроки эксплуатации имеют герметизированные аккумуляторы.

    Однако ряд производителей выпускает герметизированные аккумуляторы и с меньшим сроком службы, но более дешевые. По классификации европейского объединения производителей аккумуляторов EUROBAT эти герметизированные аккумуляторы подразделяются на 4 класса по характеристикам и сроку службы:

    • более 12 лет;
    • 10-12 лет;
    • 6-9 лет;
    • 3-5 лет.

    Аккумуляторы с короткими сроками службы, как правило, дешевле остальных и предназначены в основном для использования в качестве резервных источников тока в установках бесперебойного питания переменным током (UPS) и на временных объектах связи.

    Следует учитывать, что указанные выше значения срока службы соответствуют средней температуре эксплуатации 20 °С. При увеличении температуры эксплуатации на каждые 10 °С за счет увеличения скорости электрохимических процессов в аккумуляторах их срок службы будет сокращаться в 2 раза.

    Размещение

    По величине занимаемой площади при эксплуатации преимущество имеют герметизированные аккумуляторы. За ними в порядке возрастания занимаемой площади следуют аккумуляторы открытых типов с намазными электродами, панцирными электродами и с электродами большой поверхности.

    Размещать герметизированные аккумуляторы при эксплуатации, как правило, допускается и в вертикальном, и в горизонтальном положении - это позволяет более экономно использовать площадь под размещение электрооборудования. При горизонтальном размещении герметизированных аккумуляторов, если нет других предписаний производителя, аккумуляторы устанавливаются таким образом, чтобы пакеты электродных пластин занимали вертикальное положение.

    Эксплуатация

    Минимальных трудовых затрат при эксплуатации требуют герметизированные аккумуляторы. Остальные типы аккумуляторов требуют больших трудозатрат обслуживающего персонала, особенно те устройства, у которых величина примеси сурьмы в положительных решетках превышает 3%.

    Качество сборки, а также укупорка соединения крышки с транспортировочной пробкой (для аккумуляторов открытых типов) или предохранительным клапаном (для герметизированных аккумуляторов) должны обеспечивать герметизацию аккумуляторов при избыточном или пониженном на 20 кПа (150 мм рт. ст.) атмосферном давлении и исключать попадание внутрь атмосферного кислорода и влаги, способных ускорять сульфатацию электродов и коррозию токосборов и борнов у сухозаряженных аккумуляторов при хранении, а также исключать выход изнутри кислоты и аэрозолей при их эксплуатации. Для герметизированных аккумуляторов, кроме того, качество укупорки должно обеспечивать нормальные условия рекомбинации кислорода и ограничивать выход газа при заданных изготовителем эксплуатационных режимах работы.

    Электрические характеристики

    Емкость

    Основным параметром, характеризующим качество аккумулятора при заданных массогабаритных показателях, является его электрическая емкость, определяемая по числу ампер-часов электричества, получаемого при разряде аккумулятора определенным током до заданного конечного напряжения.

    По классификации ГОСТ Р МЭК 896-1-95, номинальная емкость стационарного аккумулятора10) определяется по времени его разряда током десятичасового режима разряда до конечного напряжения 1,8 В/эл. при средней температуре электролита при разряде 20 °С. Если средняя температура электролита при разряде отличается от 20 °С, полученное значение фактической емкости (Сф) приводят к температуре 20 °С, используя формулу:

    С = Сф / [1 + z(t - 20)]

    где z - температурный коэффициент емкости, равный 0,006 °С-1 (для режимов разряда более часа) и 0,01 °С-1 (для режимов разряда, равных одному часу и менее); t - фактическое значение средней температуры электролита при разряде, °С.

    Емкость аккумуляторов при более коротких режимах разряда меньше номинальной и при температуре электролита (20 ± 5) °С для аккумуляторов с разными типами электродов должна быть не менее указанных в таблице значений (с учетом обеспечения приемлемых пределов изменения напряжения на аппаратуре связи).

    Как правило, при вводе в эксплуатацию аккумуляторов с малым сроком хранения на первом цикле разряда батарея должна отдавать не менее 95% емкости, указанной в таблице для 10-, 5-, 3- и 1-часового режимов разряда, а на 5-10-м цикле разряда (в зависимости от предписания изготовителя) -не менее 100% емкости, указанной в таблице для 10-, 5-, 3-, 1- и 0,5-часового режимов разряда.

    При выборе аккумуляторов следует обращать внимание на то, при каких условиях задается изготовителем значение номинальной емкости. Если значение емкости задается при более высокой температуре, то для сравнения данного типа аккумулятора с другими необходимо предварительно пересчитать емкость на температуру 20 °С. Если значение емкости задается при более низком конечном напряжении разряда, необходимо пересчитать емкость по данным разряда аккумуляторов постоянным током, приводимую в эксплуатационной документации или рекламных данных производителя для данного режима разряда, до конечного напряжения, указанного в таблице.

    Кроме того, при оценке аккумулятора следует учитывать исходное значение плотности электролита, при которой задается емкость: если исходная плотность повышена, то весьма вероятно, что срок службы аккумулятора сократится.

    Пригодность к буферной работе

    Другим параметром, характеризующим стационарные свинцово-кислотные аккумуляторы, является их пригодность к буферной работе. Это означает, что предварительно заряженная батарея, подключенная параллельно с нагрузкой к выпрямительным устройствам, должна сохранять свою емкость при указанном изготовителем напряжении подзаряда и заданной его нестабильности. Обычно напряжение подзаряда Uпз указывается для каждого типа аккумулятора и находится в пределах 2,18-2,27 В/эл. (при 20 °С). При эксплуатации с другими климатическими условиями следует учитывать температурный коэффициент изменения напряжения подзаряда.

    Нестабильность подзарядного напряжения для основных типов аккумуляторов не должна превышать 1%, что накладывает определенные требования на выбор выпрямительных устройств при проектировании электропитающих установок связи.

    При буферной работе для достижения приемлемого срока службы свинцово-кислотных аккумуляторов необходимо не превышать допустимый ток их заряда, который задается различными производителями в пределах 0,1-0,3 С10. При этом следует помнить, что ток заряда аккумуляторов с напряжением, превосходящим 2,4 В/эл., не должен превышать величину 0,05 С10.

    Разброс напряжения элементов

    Важным параметром, определяемым технологией изготовления аккумуляторов, является разброс напряжения отдельных элементов в составе батареи при заряде, подзаряде и разряде. Для открытых типов аккумуляторов этот параметр задается изготовителем, как правило, в пределах ± 2% от среднего значения. При коротких режимах разряда (1-часовом и менее) разброс напряжений не должен превышать +5%. Обычно для аккумуляторов с содержанием более 2% сурьмы в основе положительных электродов разброс напряжений отдельных элементов в батарее значительно ниже вышеуказанного и не приводит к осложнениям в процессе эксплуатации аккумуляторных установок.

    Для аккумуляторов с меньшим содержанием сурьмы в основе положительных электродов или с безсурьмянистыми сплавами указанный разброс напряжения элементов значительно больше и в первый год после ввода в действие может составлять +10% от среднего значения с последующим снижением в процессе эксплуатации.

    Отсутствие тенденции к снижению величины разброса напряжения в течение первого года после ввода в действие или увеличение разброса напряжения при последующей эксплуатации свидетельствует о дефектах устройства или о нарушении условий эксплуатации.

    Особенно опасно длительное превышение напряжения на отдельных элементах в составе батареи, превышающее 2,4 В/эл., поскольку это может привести к повышенному расходу воды в отдельных элементах при заряде или подзаряде батареи и к сокращению срока ее службы или повышению трудоемкости обслуживания (для аккумуляторов открытых типов это означает более частые доливки воды). Кроме того, значительный разброс напряжения элементов в батарее может привести к потере ее емкости вследствие чрезмерно глубокого разряда отдельных элементов при разряде батареи.

    Саморазряд

    Качество технологии изготовления аккумуляторов оценивается также и по такой характеристике, как саморазряд.

    Саморазряд (по определению ГОСТ Р МЭК 896-1-95 - сохранность заряда) определяется как процентная доля потери емкости бездействующим аккумулятором (при разомкнутой внешней цепи) при хранении в течение заданного промежутка времени при температуре 20 °С. Этот параметр определяет продолжительность хранения батареи в промежутках между очередными зарядами, а также величину подзарядного тока заряженной батареи.

    Величина саморазряда в значительной степени зависит от температуры электролита, поэтому для уменьшения подзарядного тока батареи в буферном режиме ее работы или для увеличения времени хранения батареи в бездействии целесообразно выбирать помещения с пониженной средней температурой.

    Обычно среднесуточный саморазряд открытых типов аккумуляторов при 90-суточном хранении при температуре 20 ° С не должен превышать 1% номинальной емкости, с ростом температуры на 10 °С это значение удваивается. Среднесуточный саморазряд герметизированных аккумуляторов при тех же условиях хранения, как правило, не должен превышать 0,1% номинальной емкости.

    Внутреннее сопротивление и ток короткого замыкания

    Для расчета цепей автоматики и защиты аккумуляторных батарей ГОСТ Р МЭК 896-1-95 регламентирует такие характеристики аккумуляторов как их внутреннее сопротивление и ток короткого замыкания. Эти параметры определяются расчетным путем по установившимся значениям напряжения при разряде батарей токами достаточно большой величины (обычно равными 4 С10 и 20 С10) и должны приводиться в технической документации производителя. По этим данным может быть рассчитан такой выходной динамический параметр электропитающей установки (ЭПУ), как нестабильность ее выходного напряжения при скачкообразных изменениях тока нагрузки, поскольку в буферных ЭПУ выходное сопротивление установки в основном определяется внутренним сопротивлением батареи.

    Примечание:

    "Бумажная" версия статьи содержит сводную таблицу характеристик аккумуляторов (стр. 126-128). Так как формат таблицы очень неудобен для размещения на сайте, здесь эта таблица не приводится.

    Об авторах: О.П. Чекстер, начальник лаборатории ФГУП ЛОНИИС; И.М. Джосан, ведущий инженер ФГУП ЛОНИИС

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > lead acid battery

  • 13 Abnahme

    сущ.
    1) общ. купля, мет. обжатие при прокатке, отнятие, похудение, принятие (товара)
    2) геол. снос
    3) авиа. приёмочное испытание, съёмка, собирание (тока с коллектора)
    5) воен. убыль (воды), приёмка (напр. новой техники)
    6) тех. демонтаж, обжатие, перепад, потеря, убывание, удаление, съём (напр. металла)
    7) хим. отбор (напр. электронов)
    9) ж.д. отбор (электрической энергии из сети), приёмка (напр. подвижного состава)
    10) юр. приёмочный, снятие, приёмка (von Lieferungen), выборка (von Waren), принятие (íàïð. einer Lieferung)
    11) экон. понижение, спад, ослабление (напр. покупательной способности), закупка (обычно крупных партий товара), (приёмочное) испытание (товара), уменьшение, приёмка (напр. товара, готовой продукции)
    12) астр. спад (напр. кривой)
    13) радио. отбор (напр., электронов), съём (тока)
    14) текст. снятие (съёма), приёмка (товара)
    15) электр. съём (напр. тока), отбор (электрической энергии из сети)
    16) выч. приём (напр. на регистр)
    17) нефт. отвод, потребление (газа), падение (давления), приёмка (напр. оборудования), снятие (напр. пакера), вывод (напр. продукта из колонны), отбор (пробы)
    19) пищ. приём (товара, готовой продукции)
    21) свар. съём (напр., металла)
    23) внеш.торг. снижение, закупка (тк. sg), убыль (тк. sg), падение, покупка, приёмка
    24) дер. приёмка (леса, станка)
    25) океаногр. ослабление (ветра), понижение (температуры)
    26) океан. снижение (температуры, содержания вещества в чём-либо и др.)
    27) судостр. сбыт, спускание, освидетельствование

    Универсальный немецко-русский словарь > Abnahme

  • 14 throttle

    1.Устройство в виде клапана или заслонки для уменьшения давления проходящих через него по трубам пара, газа или жидкости. Гидравлический дроссель, устройство, устанавливаемое на пути движения жидкости для ограничения её расхода или изменения давления в канале. Гидравлические дроссели бывают постоянными (нерегулируемыми) и переменными (регулируемыми). К постоянным гидравлическим дросселям относятся капилляры, втулки, шайбы, пакеты шайб; к переменным - золотниковые нары, дроссели типа сопло - заслонка, винтовые дроссели. В зависимости от режима потока жидкости в рабочем канале (ламинарного или турбулентного) Гидравлические дроссели могут быть линейными, на которых перепад давлений пропорционален расходу жидкости, и квадратичными, на которых перепад давлений пропорционален квадрату расхода протекающей жидкости. Гидравлический дроссель применяют для изменения расхода рабочей жидкости с целью регулирования скорости рабочих органов машин; создания требуемых перепадов давления рабочей жидкости в гидросистемах; управления гидроусилителями в следящих гидроприводах.
    2.Катушка, включаемая в электрическую цепь для регулирования силы тока (в электротехнике).

    English-Russian oil and gas dictionary with explanation > throttle

  • 15 DP

    1. процессор для обработки данных
    2. проект предложения
    3. приоритет при отбрасывании
    4. предварительное сообщение
    5. порт пункта назначения
    6. перепад давлений
    7. обработка данных
    8. импульс набора номера
    9. дистанционная защита
    10. динамическое программирование
    11. выявленный загрязнитель воздуха, не имеющий установленных норм по предельно-допустимой концентрации

     

    выявленный загрязнитель воздуха, не имеющий установленных норм по предельно-допустимой концентрации

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    динамическое программирование

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    динамическое программирование
    Раздел математического программирования, совокупность приемов, позволяющих находить оптимальные решения, основанные на вычислении последствий каждого решения и выработке оптимальной стратегии для последующих решений. Процессы принятия решений, которые строятся по такому принципу, называются многошаговыми процессами. Математически оптимизационная задача строится в Д. п. с помощью таких соотношений, которые последовательно связаны между собой: например, полученный результат для одного года вводится в уравнение для следующего (или, наоборот, для предыдущего), и т.д. Таким образом, можно получить на вычислительной машине результаты решения задачи для любого избранного момента времени и «следовать» дальше. Д.п. применяется не обязательно для задач, связанных с течением времени. Многошаговым может быть и процесс решения вполне «статической» задачи. Таковы, например, некоторые задачи распределения ресурсов. Общим для задач Д.п. является то, что переменные в модели рассматриваются не вместе, а последовательно, одна за другой. Иными словами, строится такая вычислительная схема, когда вместо одной задачи со многими переменными строится много задач с малым числом (обычно даже одной) переменных в каждой. Это значительно сокращает объем вычислений. Однако такое преимущество достигается лишь при двух условиях: когда критерий оптимальности аддитивен, т.е. общее оптимальное решение является суммой оптимальных решений каждого шага, и когда будущие результаты не зависят от предыстории того состояния системы, при котором принимается решение. Все это вытекает из принципа оптимальности Беллмана (см. Беллмана принцип оптимальности), лежащего в основе теории Д.п. Из него же вытекает основной прием — нахождение правил доминирования, на основе которых на каждом шаге производится сравнение вариантов будущего развития и заблаговременное отсеивание заведомо бесперспективных вариантов. Когда эти правила обращаются в формулы, однозначно определяющие элементы последовательности один за другим, их называют разрешающими правилами. Процесс решения при этом складывается из двух этапов. На первом он ведется «с конца»: для каждого из различных предположений о том, чем кончился предпоследний шаг, находится условное оптимальное управление на последнем шаге, т.е. управление, которое надо применить, если предпоследний шаг закончился определенным образом. Такая процедура проводится до самого начала, а затем — второй раз — выполняется от начала к концу, в результате чего находятся уже не условные, а действительно оптимальные шаговые управления на всех шагах операции (см. пример в статье Дерево решений). Несмотря на выигрыш в сокращении вычислений при использовании подобных методов по сравнению с простым перебором возможных вариантов, их объем остается очень большим. Поэтому размерность практических задач Д.п. всегда незначительна, что ограничивает его применение. Можно выделить два наиболее общих класса задач, к которым в принципе мог бы быть применим этот метод, если бы не «проклятие размерности». (На самом деле на таких задачах, взятых в крайне упрощенном виде, пока удается лишь демонстрировать общие основы метода и анализировать экономико-математические модели). Первый — задачи планирования деятельности экономического объекта (предприятия, отрасли и т.п.) с учетом изменения потребности в производимой продукции во времени. Второй класс задач — оптимальное распределение ресурсов между различными направлениями во времени. Сюда можно отнести, в частности, такую интересную задачу: как распределить урожай зерна каждого года на питание и на семена, чтобы в сумме за ряд лет получить наибольшее количество хлеба?
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

     

    дистанционная защита
    -

    [В.А.Семенов Англо-русский словарь по релейной защите]

    дистанционная защита
    Защита с относительной селективностью, срабатывание и селективность которой зависят от измерения в месте ее установки электрических величин, по которым путем сравнения с уставками зон оценивается эквивалентная удаленность повреждения
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    дистанционная защита
    Защита, чье действие и селективность основаны на локальном измерении электрических величин, по которым рассчитываются эквивалентные расстояния до места повреждения в пределах установленных зон.
    [ http://docs.cntd.ru/document/1200069370]

    дистанционная защита
    Защита, принцип действия и селективность которой основаны на измерении в месте установки защиты электрических величин, характеризующих повреждение, и сравнении их с уставками зон.
    [Циглер Г. Цифровая дистанционная защита: принципы и применение. М.: Энергоиздат. 2005]

    EN

    distance protection
    distance relay (US)

    a non-unit protection whose operation and selectivity depend on local measurement of electrical quantities from which the equivalent distance to the fault is evaluated by comparing with zone settings
    [IEV ref 448-14-01]

    FR

    protection de distance
    protection à sélectivité relative de section dont le fonctionnement et la sélectivité dépendent de la mesure locale de grandeurs électriques à partir desquelles la distance équivalente du défaut est évaluée par comparaison avec des réglages de zones
    [IEV ref 448-14-01]

    Дистанционные защиты применяются в сетях сложной конфигурации, где по соображениям быстродействия и чувствительности не могут использоваться более простые максимальные токовые и токовые направленные защиты.
    Дистанционной защитой определяется сопротивление (или расстояние - дистанция) до места КЗ, и в зависимости от этого защита срабатывает с меньшей или большей выдержкой времени. Следует уточнить, что современные дистанционные защиты, обладающие ступенчатыми характеристиками времени, не измеряют каждый раз при КЗ значение указанного выше сопротивления на зажимах измерительного органа и не устанавливают в зависимости от этого большую или меньшую выдержку времени, а всего лишь контролируют зону, в которой произошло повреждение. Время срабатывания защиты при КЗ в любой точке рассматриваемой зоны остается неизменным. Каждая защита выполняется многоступенчатой, причем при КЗ в первой зоне, охватывающей 80-85% длины защищаемой линии, время срабатывания защиты не более 0,15 с. Для второй зоны, выходящей за пределы защищаемой линии, выдержка времени на ступень выше и колеблется в пределах 0,4-0,6 с. При КЗ в третьей зоне выдержка времени еще более увеличивается и выбирается так же, как и для направленных токовых защит.
    На рис. 7.15 показан участок сети с двухсторонним питанием и приведены согласованные характеристики выдержек времени дистанционных защит (ДЗ). При КЗ, например, в точке К1 - первой зоне действия защит ДЗ3 и ДЗ4 - они сработают с минимальным временем соответственно t I3 и t I4. Защиты ДЗ1 и ДЗ6 также придут в действие, но для них повреждение будет находиться в III зоне, и они могут сработать как резервные с временем t III1 и t III6 только в случае отказа в отключении линии БВ собственными защитами.


    4610
    Рис. 7.14. Размещение токовых направленных защит нулевой последовательности на участке сетей и характеристики выдержек времени защит:
    Р31-Р36 - комплекты токовых направленных защит нулевой последовательности


    4611
    Рис. 7.15. Защита участка сети дистанционными защитами и характеристики выдержек времени этих защит:
    ДЗ1-ДЗ6 - комплекты дистанционных защит; l3 и l4 - расстояния от мест установки защит до места повреждения


    При КЗ в точке К2 (шины Б) оно устраняется действием защит ДЗ1 и ДЗ4 с временем t II1 и t II4.
    Дистанционная защита - сложная защита, состоящая из ряда элементов (органов), каждый из которых выполняет определенную функцию. На рис. 7.16 представлена упрощенная схема дистанционной защиты со ступенчатой характеристикой выдержки времени. Схема имеет пусковой и дистанционный органы, а также органы направления и выдержки времени.
    Пусковой орган ПО выполняет функцию отстройки защиты от нормального режима работы и пускает ее в момент возникновения КЗ. В качестве такого органа в рассматриваемой схеме применено реле сопротивления, реагирующее на ток I р и напряжение U p на зажимах реле.
    Дистанционные (или измерительные) органы ДО1 и ДО2 устанавливают меру удаленности места КЗ.
    Каждый из них выполнен при помощи реле сопротивления, которое срабатывает при КЗ, если
    4612
    где Z p - сопротивление на зажимах реле; Z - сопротивление защищаемой линии длиной 1 км; l - длина участка линии до места КЗ, км; Z cp - сопротивление срабатывания реле.
    Из приведенного соотношения видно, что сопротивление на зажимах реле Z p пропорционально расстоянию l до места КЗ.
    Органы выдержки времени ОВ2 и ОВ3 создают выдержку времени, с которой защита действует на отключение линии при КЗ во второй и третьей зонах. Орган направления OHM разрешает работу защиты при направлении мощности КЗ от шин в линию.
    В схеме предусмотрена блокировка БН, выводящая защиту из действия при повреждениях цепей напряжения, питающих защиту. Дело в том, что если при повреждении цепей напряжение на зажимах защиты Uр=0, то Zp=0. Это означает, что и пусковой, и дистанционный органы могут сработать неправильно. Для предотвращения отключения линии при появлении неисправности в цепях напряжения блокировка снимает с защиты постоянный ток и подает сигнал о неисправности цепей напряжения. Оперативный персонал в этом случае обязан быстро восстановить нормальное напряжение на защите. Если по какой-либо причине это не удается выполнить, защиту следует вывести из действия переводом накладки в положение "Отключено".

    4613
    Рис. 7.16. Принципиальная схема дистанционной защиты со ступенчатой характеристикой выдержки времени

    Работа защиты.

    При КЗ на линии срабатывают реле пускового органа ПО и реле органа направления OHM. Через контакты этих реле плюс постоянного тока поступит на контакты дистанционных органов и на обмотку реле времени третьей зоны ОВ3 и приведет его в действие. Если КЗ находится в первой зоне, дистанционный орган ДО1 замкнет свои контакты и пошлет импульс на отключение выключателя без выдержки времени. При КЗ во второй зоне ДО1 работать не будет, так как значение сопротивления на зажимах его реле будет больше значения сопротивления срабатывания. В этом случае сработает дистанционный орган второй зоны ДО2, который запустит реле времени ОВ2. По истечении выдержки времени второй зоны от реле ОВ2 поступит импульс на отключение линии. Если КЗ произойдет в третьей зоне, дистанционные органы ДО1 и ДО2 работать не будут, так как значения сопротивления на их зажимах больше значений сопротивлений срабатывания. Реле времени ОВ3, запущенное в момент возникновения КЗ контактами реле OHM, доработает и по истечении выдержки времени третьей зоны пошлет импульс на отключение выключателя линии. Дистанционный орган для третьей зоны защиты, как правило, не устанавливается.
    В комплекты дистанционных защит входят также устройства, предотвращающие срабатывание защит при качаниях в системе.

    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-4.html]

     

    Тематики

    Синонимы

    EN

    DE

    • Distanzschutz, m

    FR

     

    импульс набора номера

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    обработка данных
    Систематическое осуществление операций над данными.
    [ИСО/МЭК 2382-1]
    [ ГОСТ Р 52292-2004]

    обработка данных
    Технологическая операция, в результате которой изменяет свое значение хотя бы один из показателей, характеризующих состояние данных (объем данных при этом не изменяется).
    [ ГОСТ Р 51170-98]

    обработка данных
    - Любое преобразование данных при решении конкретной задачи.
    - Работа, выполняемая компьютером.
    [ http://www.morepc.ru/dict/]

    обработка данных
    Процесс приведения данных к виду, удобному для использования. Независимо от вида информации, которая должна быть получена, и типа оборудования любая система О.д. выполняет три основные группы операций: подбор исходных, входных данных (см. Сбор данных), собственно их обработку (в процессе которой система оперирует промежуточными данными), получение и анализ результатов, т.е. выходных данных). Выполняет ли эти операции человек или машина (см. Автоматизированная система обработки данных), все равно они следуют при этом заданному алгоритму (для человека это могут быть инструкция, методика, а для ЭВМ — программа). Важным процессом О.д. является агрегирование, укрупнение их от одной к другой ступени хозяйственной иерархии. Проверка статистических данных, приведение их к сопоставимому виду, сложение, вычитание и другие арифметические операции — тоже процессы О.д. Можно назвать также выборку, отсечение ненужных данных, запоминание, изменение последовательности (упорядочение), классификацию и многие другие. О.д. предшествует во времени принятию решений. Она может производиться эпизодически, периодически (т.е. через заданные промежутки времени), в АСУ — также в реальном масштабе времени. Последнее означает, что О.д. производится с той же скоростью, с какой протекают описываемые ими события, иначе говоря — со скоростью, достаточной для анализа событий и управления их последующим ходом.
    [ http://slovar-lopatnikov.ru/]


    Тематики

    EN

     

    перепад давлений

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    порт пункта назначения
    (МСЭ-T G.7041/ Y.1303).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    предварительное сообщение

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    приоритет при отбрасывании
    (МСЭ-T G.8010/ Y.1306).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    проект предложения

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    процессор для обработки данных

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > DP

  • 16 einzelner momentaner Stromstoß

    прил.
    радио. одиночный кратковременный импульс тока, одиночный перепад (одиночный скачок) тока с. крутым фронтом

    Универсальный немецко-русский словарь > einzelner momentaner Stromstoß

  • 17 step

    1) стадия; этап; ступень; переход ( в цикле)
    5) горн. уступ || разрабатывать уступами
    6) ступень каскада гидроузлов, бьеф
    10) мор. редан, уступ
    13) скачок (тока, сигнала)
    14) перепад (напр. уровней сигнала); ступенька ( ступенчатой функции)
    16) мн. ч. шкала ( устойчивости окраски)
    17) мн. ч. стремянка
    in step — синхронно;
    to bring into step — синхронизовать;
    to step down voltageпонижать напряжение;
    to step on the gasполностью нажать педаль акселератора, "выжать газ";
    to step up voltageповышать напряжение
    -
    aging step
    -
    automated manufacturing step
    -
    balanced step
    -
    brake step
    -
    button step
    -
    cantilever step
    -
    cleavage step
    -
    collar step
    -
    control step
    -
    current step
    -
    dancing step
    -
    drive-in step of diffusion
    -
    eligible job step
    -
    folding step
    -
    frequency step
    -
    gray scale step
    -
    growth step
    -
    hanging step
    -
    incremental step
    -
    input step
    -
    invoked job step
    -
    job step
    -
    kinked step
    -
    loading step
    -
    load step
    -
    loop step
    -
    machining step
    -
    masking step
    -
    mask step
    -
    mesa step
    -
    missed motor step
    -
    operating step
    -
    phase step
    -
    predeposition step of diffusion
    -
    processing step
    -
    process step
    -
    program step
    -
    propagation step
    -
    pulse-controlled step
    -
    quantization step
    -
    ramped step
    -
    rate-limiting step
    -
    retractable air steps
    -
    selection step
    -
    sill step
    -
    starting step
    -
    step of distribution
    -
    step of integration
    -
    step of iteration
    -
    step of network
    -
    tapping step
    -
    time step
    -
    unit step
    -
    velocity step
    -
    voltage step
    -
    wedge step

    Англо-русский словарь технических терминов > step

  • 18 base current change

    Телекоммуникации: перепад базового тока

    Универсальный англо-русский словарь > base current change

  • 19 D

    1. coefficient of diffusion - коэффициент диффузии;
    2. dam - матка, самка; плотина; дамба; запруда;
    3. data - данные; сведения;
    4. date - срок; период;
    5. datum - данная величина; начало отсчёта; репер; база; элемент данных; единица информации;
    6. day - день, сутки;
    7. dead - мёртвый; неживой;
    8. deci— деци-; 10-1;
    9. deciduous - опадающий; осыпающийся; лиственный; листопадный; молочный;
    10. decoy - ложная цель; ЛЦ;
    11. deep - глубина; мощность; глубокий; мощный;
    12. deflection plate - отклоняющая пластина;
    13. deformation - деформация;
    14. degree - градус; качество; коэффициент; порядок; степень родства; степень;
    15. delay - задержка; запаздывание; отсрочка; выдержка времени; время задержки; задерживать; запаздывать; откладывать;
    16. delete - вычеркивать; стирать; удалять; ликвидировать, уничтожать;
    17. delivery - доставка; поставка; подача питания; питание; выдача;
    18. demodulator - демодулятор; детектор;
    19. demonstration - демонстрация; наглядный показ; доказательство; проявление;
    20. density - густота; интенсивность; концентрация; напряженность поля; напряжённость; плотность посадки; плотность; удельный вес;
    21. depletion - обеднение;
    22. depth - глубина; мощность;
    23. derivative - производное;
    24. descendant - потомок;
    25. deuterium - дейтерий;
    26. development - вскрытие; вывод формулы; опытно-конструкторские работы; ОКР; подготовка; проектирование; развертывание; развитие; разложение в ряд; разработка; усовершенствование;
    27. deviation - отклонение;
    28. dextrorotatory - правовращающий;
    29. dial - градуированный диск; круговая шкала; лимб; циферблат; цифровой диск;
    30. diameter - диаметр;
    31. dielectric - диэлектрик; диэлектрический;
    32. differential - дифференциал; перепад; разность; дифференциальный; разностный;
    33. differential coefficient - дифференциальный коэффициент;
    34. diffusing capacity - рассеянная ёмкость;
    35. diffusion coefficient - коэффициент диффузии;
    36. diffusivity - диффузность;
    37. digit - знак; однозначное число; разряд; символ; цифра;
    38. digital - цифровой; дискретный;
    39. dilution - разведение; разбавление;
    40. dimension - величина; габариты; измерение; линейный или угловой размер; объём; размер; размерность;
    41. D-indicator - индикатор типа D;
    42. diode - диод;
    43. diopter - диоптрия;
    44. direct - направлять; ориентировать; управлять; наводить на цель; прямой, непосредственный; постоянный (о токе);
    45. director - директор; начальник; пассивный вибратор (элемент многовибраторной антенны); направляющее устройство; прибор управления; целеуказатель;
    46. discharged - разряженный; израсходованный; выпущенный;
    47. dispatch - депеша; сообщение; телеграмма; письмо; донесение; отправление; отправка; отсылать; отправлять; посылать; сообщать;
    48. dispenser - распределительное устройство; выбрасыватель дипольных отражателей;
    49. dispersion - дисперсия;
    50. displacement - рассогласование; отклонение; смещение, сдвиг; перемещение; замена, замещение;
    51. display - вывод данных на экран; дисплей; изображение; индикатор; индикация; отображение данных; отображение; устройство отображения; электронное табло;
    52. distance - расстояние; дальность; дистанция; интервал; длина;
    53. doctor - доктор; врач;
    54. dominant - доминант; массовый вид; доминирующая форма; преобладающий вид;
    55. dorsal - дорсальный; дорзальный; спинной;
    56. dose - доза; норма; рацион;
    57. double - двойное количество; удваивать; увеличивать в два раза; умножать на два; двойной, удвоенный; парный; сдвоенный;
    58. double line - двойная линия;
    59. doubtful - сомнительный, неопределенный, недостоверный;
    60. drain - дренаж; потребление тока; сток;
    61. drone - беспилотный ЛА; телеуправляемый самолет; воздушная управляемая мишень;
    62. drum - цилиндр; магнитный барабан;
    63. dry cow - сухостойная корова;
    64. duration - длительность, продолжительность;
    65. electric displacement - электрическое смещение

    Англо-русский словарь технических аббревиатур > D

  • 20 abfallen*

    vi (s)
    1) отваливаться, отпадать; опадать, осыпаться

    Die Blüten fállen ab. — Цветы осыпаются.

    2) (für A) перепадать (на чью-л долю)

    Étwas fällt für ihn ab. — Ему что-нибудь перепадёт.

    3) отречься, изменить

    vom Gláúben ábfallen — отречься от веры

    4) падать, спускаться, уходить вниз

    Der Berg fällt steil ab. — Гора круто обрывается.

    5) быть [становиться] хуже, уступать, меркнуть

    Die Sängerin fiel gégen die Sänger stark ab. — Певица сильно уступала певцу.

    6) падать, спадать, убывать, идти на убыль

    Die Strómspannung fiel ab. — Напряжение тока упало.

    7) спорт отставать (о бегуне); уступать
    8) редк худеть, чахнуть (из-за болезни и т. п.)

    Универсальный немецко-русский словарь > abfallen*

См. также в других словарях:

  • номинальный — 3.7 номинальный: Слово, используемое проектировщиком или производителем в таких словосочетаниях, как номинальная мощность, номинальное давление, номинальная температура и номинальная скорость. Примечание Следует избегать использования этого слова …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 23769-79: Приборы электронные и устройства защитные СВЧ. Термины, определения и буквенные обозначения — Терминология ГОСТ 23769 79: Приборы электронные и устройства защитные СВЧ. Термины, определения и буквенные обозначения оригинал документа: 39. π вид колебаний Ндп. Противофазный вид колебаний Вид колебаний, при котором высокочастотные напряжения …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 50369-92: Электроприводы. Термины и определения — Терминология ГОСТ Р 50369 92: Электроприводы. Термины и определения оригинал документа: 3 (электро) двигатель (электропривода): Электромеханический преобразователь, предназначенный для преобразования электрической энергии в механическую.… …   Словарь-справочник терминов нормативно-технической документации

  • Паровая турбина —         первичный паровой двигатель с вращательным движением рабочего органа ротора и непрерывным рабочим процессом; служит для преобразования тепловой энергии пара водяного (См. Пар водяной) в механическую работу. Поток водяного пара поступает… …   Большая советская энциклопедия

  • ТЕРМОЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ — совокупность физ. явлений, обусловленных взаимосвязью между тепловыми и электрич. процессами в тв. проводниках. К Т. я. относятся Зеебека эффект, Пельтье эффект и Томсона эффект. Причина Т. я. нарушение теплового равновесия в потоке носителей… …   Физическая энциклопедия

  • ГОСТ 20938-75: Трансформаторы малой мощности. Термины и определения — Терминология ГОСТ 20938 75: Трансформаторы малой мощности. Термины и определения оригинал документа: 73. Асимметрия обмоток трансформатора малой мощности Асимметрия обмоток D. Wicklungsunsymmetrie des Kleintransformators E. Winding asymmetry F.… …   Словарь-справочник терминов нормативно-технической документации

  • Томсона эффект — дополнительное выделение или поглощение тепла (помимо тепла, выделяемого в соответствии с законом Джоуля Ленца) при прохождении тока через проводник, в котором имеется перепад температуры. Количество тепла пропорционально току и перепаду… …   Энциклопедический словарь

  • СО 34.21.308-2005: Гидротехника. Основные понятия. Термины и определения — Терминология СО 34.21.308 2005: Гидротехника. Основные понятия. Термины и определения: 3.10.28 аванпорт: Ограниченная волнозащитными дамбами акватория в верхнем бьефе гидроузла, снабженная причальными устройствами и предназначенная для размещения …   Словарь-справочник терминов нормативно-технической документации

  • Паровая машина — тепловой двигатель внешнего сгорания, преобразующий энергию пара в механическую работу возвратно поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина  любой двигатель внешнего сгорания …   Википедия

  • устройство — 2.5 устройство: Элемент или блок элементов, который выполняет одну или более функцию. Источник: ГОСТ Р 52388 2005: Мототранспортны …   Словарь-справочник терминов нормативно-технической документации

  • Полупроводники —         широкий класс веществ, характеризующихся значениями электропроводности σ, промежуточными между электропроводностью металлов (См. Металлы) (σ Полупроводники 106 104 ом 1 см 1) и хороших диэлектриков (См. Диэлектрики) (σ ≤ 10 10 10 12 ом… …   Большая советская энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»